In a cross between two homozygous plants of synthetic and natural origin, we demonstrate that novel structural genome variants from the synthetic parent cause immediate genome diversification among F1 offspring. Long read sequencing in twelve F1 sister plants revealed five large-scale structural rearrangements where both parents carried different homozygous alleles but the heterozygous F1 genomes were not identical heterozygotes as expected. Such spontaneous rearrangements were part of homoeologous exchanges or segmental deletions and were identified in different, individual F1 plants.
View Article and Find Full Text PDFBlackleg is one of the major fungal diseases in oilseed rape/canola worldwide. Most commercial cultivars carry gene-mediated qualitative resistances that confer a high level of race-specific protection against , the causal fungus of blackleg disease. However, monogenic resistances of this kind can potentially be rapidly overcome by mutations in the pathogen's avirulence genes.
View Article and Find Full Text PDFA novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes.
View Article and Find Full Text PDFGenome structural variation (SV) contributes strongly to trait variation in eukaryotic species and may have an even higher functional significance than single-nucleotide polymorphism (SNP). In recent years, there have been a number of studies associating large chromosomal scale SV ranging from hundreds of kilobases all the way up to a few megabases to key agronomic traits in plant genomes. However, there have been little or no efforts towards cataloguing small- (30-10 000 bp) to mid-scale (10 000-30 000 bp) SV and their impact on evolution and adaptation-related traits in plants.
View Article and Find Full Text PDFOilseed rape is one of the most important dicotyledonous field crops in the world, where it plays a key role in productive cereal crop rotations. However, its production requires high nitrogen fertilization and its nitrogen footprint exceeds that of most other globally important crops. Hence, increased nitrogen use efficiency (NUE) in this crop is of high priority for sustainable agriculture.
View Article and Find Full Text PDF