Publications by authors named "P Vlachos"

Background: Design parameters of prefilled pens, known as autoinjectors within the medical device community, can affect pen's functioning and user experience. This study compares the performance of two 2 mL prefilled pen devices: lebrikizumab (125 mg/mL) and dupilumab (150 mg/mL).

Research Design And Methods: We recorded force and acoustic signals during administration from the prefilled pen devices and performed high-speed video recording during needle insertion and drug delivery.

View Article and Find Full Text PDF

Background: The perinatal transition's impact on systemic right ventricle (SRV) cardiac hemodynamics is not fully understood. Standard clinical image analysis tools fall short of capturing comprehensive diastolic and systolic measures of these hemodynamics.

Objectives: Compare standard and novel hemodynamic echocardiogram (echo) parameters to quantify perinatal changes in SRV and healthy controls.

View Article and Find Full Text PDF

Purpose: An automatic method is presented for estimating 4D flow MRI velocity measurement uncertainty in each voxel. The velocity distance (VD) metric, a statistical distance between the measured velocity and local error distribution, is introduced as a novel measure of 4D flow MRI velocity measurement quality.

Methods: The method uses mass conservation to assess the local velocity error variance and the standardized difference of means (SDM) velocity to estimate the velocity error correlations.

View Article and Find Full Text PDF

The effects of pressure drop across cardiac valve cushion regions and endocardial wall strain in the early developmental stages of a teleost species heart are poorly understood. In the presented work, we utilize microscale particle image velocimetry (μPIV) flow measurements of developing medaka hearts from 3 to 14 dpf (n = 5 at each dpf) to quantify the pressure field and endocardial wall strain. Peak pressure drop at the atrioventricular canal (ΔPAVC) and outflow tract (ΔPOFT) show a steady increase with fish age progression.

View Article and Find Full Text PDF

Hypothesis: Lipid nanoparticle self-assembly is a complex process that relies on ion pairing between nucleic acids and hydrophobic cationic lipid counterions for encapsulation. The chemical factors influencing this process, such as formulation composition, have been the focus of recent research. However, the physical factors, particularly the mixing protocol, which directly modulates these chemical factors, have yet to be mechanistically examined using a reproducible mixing platform comparable to the industry standard.

View Article and Find Full Text PDF