Oxidative stress plays a pivotal role in the ageing process and in the pathogenesis of numerable diseases. The quantification of the phenomenon is of paramount importance. In the present study, we introduce a novel and simple assay, the Blue CrO(5) assay, for the evaluation of the oxidant and antioxidant capacity of various biological samples and known antioxidants.
View Article and Find Full Text PDFThis article describes an analytical method for the determination of magnesium taking advantage of the cloud point phenomenon employing a suitable chelating agent (chloranilate) for Mg analysis. The method encompasses pre-concentration of the metal chelate followed by flame atomic absorption spectrometry (FAAS) analysis. The chelating agent chosen for this task is a newly synthesised salt of chloranilic acid, trizma-chloranilate, which reacts with Mg but at the same time has a very low affinity for other metallic cations like silicon, aluminium and sodium, which interfere with the determination of Mg in FAAS.
View Article and Find Full Text PDFAim: To investigate the effect of carvacrol on chemical carcinogenesis, cancer cell proliferation and platelet aggregation, and to find possible correlation between all these processes and the antioxidant properties of carvacrol.
Materials And Methods: 3,4-benzopyrene-induced carcinogenesis model using Wistar rats was used. Leiomyosarcoma cells from Wistar rats were used to study carvacrol antiproliferative activity in vitro.
An electrochemical method based on the concept of a biosensor for the monitoring of ozone is described for first time. The proposed method includes two parts: a selective sorbent for ozone, that is, eugenol, and a formaldehyde amperometric biosensor mounted into a flow-through cell. Ozone adds rapidly to the double bond of the allyl group of eugenol, which has been immobilized onto a hydrophobic C-18 reactor and the so produced formaldehyde is collected into the working buffer solution (sampler) and pumped to the detector.
View Article and Find Full Text PDFThe catalytic effect of vanadium on the pyronine B-H2O2 system is examined. Enhancement of the catalytic reaction rate along with the efficiency and selectivity against vanadium is achieved in a formic acid environment in the presence of a nonionic surfactant (Triton X-114). Elimination of drastic interference caused by inorganic acids and aqueous matrix along with a 50-fold preconcentration of vanadium are facilitated through cloud point extraction of its neutral complex with 8-quinolinol in an acidic solution.
View Article and Find Full Text PDF