An understanding of the biological environment, and in particular the physical morphology, is crucial for those developing medical devices and software applications. It not only informs appropriate design inputs, but provides the opportunity to evaluate outputs via virtual or synthetic models before investing in costly clinical investigations. The large bowel is a pertinent example, having a major demand for effective technological solutions to clinical unmet needs.
View Article and Find Full Text PDFThis article explores the concept of external magnetic control for vine robots to enable their high curvature steering and navigation for use in endoluminal applications. Vine robots, inspired by natural growth and locomotion strategies, present unique shape adaptation capabilities that allow passive deformation around obstacles. However, without additional steering mechanisms, they lack the ability to actively select the desired direction of growth.
View Article and Find Full Text PDFHealthc Technol Lett
December 2023
Real-time detection of surgical tools in laparoscopic data plays a vital role in understanding surgical procedures, evaluating the performance of trainees, facilitating learning, and ultimately supporting the autonomy of robotic systems. Existing detection methods for surgical data need to improve processing speed and high prediction accuracy. Most methods rely on anchors or region proposals, limiting their adaptability to variations in tool appearance and leading to sub-optimal detection results.
View Article and Find Full Text PDF