The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2023
The thawing of snow and sea ice produces distinctive melt ponds on the surface of the Arctic sea ice, which covers a significant portion of the surface sea ice during summer. Melt-pond salinity impacts heat transfer to the ice below and the melting rate. It is widely known that melt ponds play a significant role in heat fluxes, ice-albedo feedback, and sea-ice energy balance.
View Article and Find Full Text PDFLand-terminating glaciers are retreating globally, resulting in the expansion of the ice-free glacier forelands (GFs). These GFs act as a natural laboratory to study microbial community succession, soil formation, and ecosystem development. Here, we have employed gene-centric and genome-resolved metagenomic approaches to disseminate microbial diversity, community structure, and their associated biogeochemical processes involved in the carbon, nitrogen, and sulfur cycling across three GF ecosystems.
View Article and Find Full Text PDFArchaea constitute a substantial fraction of marine microbial biomass and play critical roles in the biogeochemistry of oceans. However, studies on their distribution and ecology in the Arctic Ocean are relatively scarce. Here, we studied the distributions of archaea and archaeal ammonia monooxygenase (amoA) gene in the western Arctic Ocean, using the amplicon sequencing approach from the sea surface to deep waters up to 3040 m depth.
View Article and Find Full Text PDFNitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N) to ammonia (NH) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden.
View Article and Find Full Text PDF