Zn-containing TiO-based coatings with Na, Ca, Si, and K additives were obtained by plasma electrolytic oxidation (PEO) of Ti in order to achieve an effective and broad bactericidal protection without compromising biocompatibility. A protocol has been developed for cleaning the coating surface from electrolyte residues, ensuring the preservation of the microstructure and composition of the surface layer. Using high-resolution transmission electron microscopy, three characteristic microstructural zones in the PEO-Zn coating are well documented: zone 1 with a TiO-based nanocrystalline structure, zone 2 with an amorphous structure, and zone 3 around pores with an amorphous-nanocrystalline structure.
View Article and Find Full Text PDFPolymers (Basel)
January 2024
Novel nanomaterials used for wound healing should have many beneficial properties, including high biological and antibacterial activity. Immobilization of proteins can stimulate cell migration and viability, and implanted Ag ions provide an antimicrobial effect. However, the ion implantation method, often used to introduce a bactericidal element into the surface, can lead to the degradation of vital proteins.
View Article and Find Full Text PDFBone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence.
View Article and Find Full Text PDFWe report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing NaHPO, Ca(OH), (NH)CO, NaSiO, CuSO, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in a mouse craniotomy model.
View Article and Find Full Text PDFis a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described phage, APK37.1, were characterized.
View Article and Find Full Text PDF