Background: New bioinsecticides with novel modes of action are urgently needed to minimise the environmental and safety hazards associated with the use of synthetic chemical pesticides and to combat growing levels of pesticide resistance. The pea seed albumin PA1b knottin peptide is the only known proteinaceous inhibitor of insect vacuolar adenosine triphosphatase (V-ATPase) rotary proton pumps. Oral toxicity towards insect pests and an absence of activity towards mammals makes Pa1b an attractive candidate for development as a bioinsecticide.
View Article and Find Full Text PDFGenetic purity of seeds is one of the critical aspects in the seed industry. Molecular seed testing laboratories are utilizing PCR based diagnostic tools for genetic purity analysis. High quality DNA is an essential prerequisite for such analyses.
View Article and Find Full Text PDFBackground: Spear®-T sold as a contact foliar spray for the control of glasshouse pests such as aphids, thrips, spider mites and whiteflies, contains the recombinant spider venom peptide GS-ω/κ-HxTx-Hv1h (named as GS-ω/κ-HxTx-Hv1a by Vestaron) as the active ingredient. Here we investigate whether fusion of the peptide to snowdrop lectin, (Galanthus nivalis agglutinin; GNA) enhances the efficacy of this venom peptide towards aphid pests.
Results: Recombinant GS-ω/κ-HxTx-Hv1h (HxTx-Hv1h) and an HxTx-Hv1h/GNA fusion protein were produced using the yeast Pichia pastoris.
Herein, we report the production of a recombinant Tepary bean lectin (TBL-1), its three-dimensional (3D) structure, and its differential recognition for cancer-type glycoconjugates. TBL-1 was expressed in yielding 316 mg per liter of culture, and was purified by nickel affinity chromatography. Characterization of the protein showed that TBL-1 is a stable 120 kDa homo-tetramer folded as a canonical leguminous lectin with two divalent cations (Ca and Mn) attached to each subunit, confirmed in its 3D structure solved by X-ray diffraction at 1.
View Article and Find Full Text PDFThe Drosophila melanogaster (fruit fly) gene Diap1 encodes a protein referred to as DIAP1 (D rosophila Inhibitor of Apoptosis Protein 1) that acts to supress apoptosis in "normal" cells in the fly. In this study we investigate the use of RNA interference (RNAi) to control two dipteran pests, Musca domestica and Delia radicum, by disrupting the control of apoptosis. Larval injections of 125-500 ng of Diap1 dsRNA resulted in dose-dependent mortality which was shown to be attributable to down-regulation of target mRNA.
View Article and Find Full Text PDF