Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with significant public health implications that arise following exposure to traumatic events. Recent studies highlight the involvement of immune dysregulation in PTSD, characterized by elevated inflammatory markers. However, the precise mechanisms underlying this immune imbalance remain unclear.
View Article and Find Full Text PDFIntroduction: Sepsis is associated with endothelial cell (EC) dysfunction, increased vascular permeability and organ injury, which may lead to mortality, acute respiratory distress syndrome (ARDS) and acute renal failure (ARF). There are no reliable biomarkers to predict these sepsis complications at present. Recent evidence suggests that circulating extracellular vesicles (EVs) and their content caspase-1 and miR-126 may play a critical role in modulating vascular injury in sepsis; however, the association between circulating EVs and sepsis outcomes remains largely unknown.
View Article and Find Full Text PDFSepsis-associated encephalopathy (SAE) is characterized by acute and diffuse brain dysfunction and correlates with long-term cognitive impairments with no targeted therapy. We used a mouse model of sepsis-related cognitive impairment to examine the role of lncRNA nuclear enriched abundant transcript 1 (Neat1) in SAE. We observed that Neat1 expression was increased in neuronal cells from septic mice and that it directly interacts with hemoglobin subunit beta (Hbb), preventing its degradation.
View Article and Find Full Text PDFBrain pericytes regulate cerebral blood flow, maintain the integrity of the blood-brain barrier (BBB), and facilitate the removal of amyloid β (Aβ), which is critical to healthy brain activity. Pericyte loss has been observed in brains from patients with Alzheimer's disease (AD) and animal models. Our previous data demonstrated that friend leukemia virus integration 1 (Fli-1), an erythroblast transformation-specific (ETS) transcription factor, governs pericyte viability in murine sepsis; however, the role of Fli-1 and its impact on pericyte loss in AD remain unknown.
View Article and Find Full Text PDFThe mission of the National Center for Advancing Translational Science (NCATS) is to speed the development of drugs from discovery to approval to dissemination and implementation. The Medical University of South Carolina and the South Carolina Clinical and Translational Research Institute host a NCATS funded predoctoral T32 training grant (TL1) with a focus on translational research. Doctoral (PhD) trainees working at the bench usually have limited opportunity for clinical interactions to gain a clinical perspective on the diseases that are the focus of their dissertation research.
View Article and Find Full Text PDF