Publications by authors named "P Urteaga"

It was designed and constructed a new thermogravitational column able to operate at high pressures (up to 50 MPa). This new thermogravitational column is of the cylindrical type with closed ends. It is made of stainless steel.

View Article and Find Full Text PDF

In this work, we have measured the thermodiffusion coefficient of different n-alkane binary mixtures at several concentrations using the thermogravitational technique. In particular, we have studied the n-dodecane/n-heptane system as a function of composition and other systems covering a large range of mass differences and concentration at 25 degrees C and 1 atm. The results show that for any concentration the thermodiffusion coefficient of n-alkane mixtures is proportional to the mass difference between the components and to the ratio of the thermal expansion coefficient and viscosity of the mixture.

View Article and Find Full Text PDF

In this article we determined the thermal diffusion coefficient (D(T)) in equimolar mixtures of n-alkanes nC(i)-nC(12) (i=5,6,7,8,9,17,18), nC(i)-nC(10) (i=5,6,7,15,16,17,18), and nC(i)-nC(6) (i=10,12,14,16,18) at 25 degrees C and at atmospheric pressure using the thermogravitational technique. The results obtained from this study together with the previously published ones in the series of nC(i)-nC(18) (i=5,6,7,8,9,10,11,12,13) show that the main parameter that determines D(T) in each series is in association with the molecular weights of the mixture's components. However, an empirical quantitative correlation has been obtained between D(T), the molecular weights of the components, the viscosity, and the thermal expansion coefficient of the mixtures.

View Article and Find Full Text PDF