Liposarcoma is the most prevalent sarcoma in adults representing 20% of all sarcomas with well-differentiated/dedifferentiated among the most common subtypes represented. Despite multimodality treatment approaches, there has not been any appreciable change in survival benefit in the past 10 years. The future of targeted therapy for WD/DDLPS is promising with the intention to spare multi-visceral removal due to radical surgical resection.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is the 7th most common cancer globally with a 40-50 % survival rate. Although macrophage migration inhibitory factor (MIF) is overexpressed in most solid tumors and promotes tumor growth and invasion, the therapeutic potential of MIF inhibition in HNSCC is yet to be explored. In this study, we investigated the efficacy of CPSI-1306, a small-molecule MIF inhibitor, on HNSCC cell growth and cancer associated signaling pathways in vitro, as well as its impact on T cells in the HNSCC tumor microenvironment in vivo.
View Article and Find Full Text PDFThe aim of the presented work was to develop folate based radiolabeled compound intended to be used as diagnostic aid for the various folate-receptor overexpressing cancers eg. breast cancer, brain tumors, lung cancer etc. Folate was directly radiolabeled with Tc-99m using Quality-by-Design and encapsulated in micellar nanocarriers.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear.
View Article and Find Full Text PDFThe aim of the work presented in this manuscript was to radiolabel methotrexate and prepare radiolabeled methotrexate micelles, an antifolate drug with Tc-99m using QbD approach. The radiolabeling was executed using the experimental design and the radiolabeled drug was further encapsulated in micelles. The authors are of the view that the radiolabeled MTX could be used to target the folate receptor overexpressing cancers such as the kidney, colorectal, breast, brain etc thereby opening newer possibilities to the theranostic applications of the formed conjugate.
View Article and Find Full Text PDF