Publications by authors named "P Tropel"

In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture.

View Article and Find Full Text PDF

Deubiquitinating enzymes may play a major regulatory role in pluripotent stem cells (PSCs), but few studies have investigated this topic. Within this family of enzymes, we found that the ubiquitin-specific peptidase USP44, is highly expressed in embryonic stem cells, induced PSCs (iPSCs), and testes as compared with differentiated progenies and somatic organs. Analysis by quantitative polymerase chain reaction and 5' RACE showed that alternate promoters are responsible for expression in PSCs and organs.

View Article and Find Full Text PDF
Article Synopsis
  • - Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder linked to a repeated sequence of CGG in the FMR1 gene, which can lead to two mechanisms of pathology: RNA gain-of-function and production of a harmful protein called FMRpolyG.
  • - Research using transgenic mice showed that while the RNA alone does not cause harm, the presence of FMRpolyG is pathogenic and disrupts the structure of nuclear lamina in neurons derived from FXTAS patient cells.
  • - The study found that the protein LAP2β can counteract the neuronal damage caused by FMRpolyG, indicating that changes in nuclear lamina architecture play a significant role in the
View Article and Find Full Text PDF

Layer-by-layer (LbL) assembled multicomponent films offer the opportunity to control and to fine-tune cell attachment and behavior on solid surfaces [Layer-by-Layer Films for Biomedical Applications, edited by Picart et al. (Wiley, Weinheim, 2014) and El-Khouri et al., "Multifunctional layer-by-layer architectures for biological applications," in Functional Polymeric Ultrathin Films, edited by Advincula and Knoll (Wiley, Weinheim, 2011), Vol.

View Article and Find Full Text PDF

For years, our ability to study pathological changes in neurological diseases has been hampered by the lack of relevant models until the recent groundbreaking work from Yamanaka's group showing that it is feasible to generate induced pluripotent stem cells (iPSCs) from human somatic cells and to redirect the fate of these iPSCs into differentiated cells. In particular, much interest has focused on the ability to differentiate human iPSCs into neuronal progenitors and functional neurons for relevance to a large number of pathologies including mental retardation and behavioral or degenerative syndromes. Current differentiation protocols are time-consuming and generate limited amounts of cells, hindering use on a large scale.

View Article and Find Full Text PDF