Publications by authors named "P Trapani"

Transient or persistent immunosuppression is a known risk factor for morbidity and mortality in critically ill patients. Aim of the present study is to evaluate the lymphopenia in patients admitted to the Emergency Unit of AOU Policlinico Umberto I, to investigate its prevalence at admission and the persistence during hospitalization until discharge. Possible correlations were evaluated between lymphopenia, diagnosis of admission, comorbidities and chronic treatments.

View Article and Find Full Text PDF

Background: Quarantine was one of the strategies adopted by governments against the spread of COVID-19. This restriction has caused an increase in sedentary behaviors and a decrease in the practice of physical activity (PA), with a consequent negative impact on lifestyle both in healthy people and in those who need constant practice of PA to combat diseases, such as patients suffering from neuromuscular diseases (NMDs). Hence, this study aimed to compare PA levels among patients with NMD during and after quarantine.

View Article and Find Full Text PDF

Ultrashort Bessel beams have been used in this work to study the response of a 430-μm-thick monocrystalline sapphire sample to laser-matter interaction when injecting the beam orthogonally through the whole sample thickness. We show that with a 12° Bessel beam cone angle, we are able to internally modify the material and generate tailorable elongated microstructures while preventing the formation of surface cracks, even in the picosecond regime, contrary to what was previously reported in the literature. On the other hand, by means of Bessel beam machining combined with a trepanning technique where very high energy pulses are needed, we were able to generate 100 μm diameter through-holes, eventually with negligible cracks and very low taper angles thanks to an optimization achieved by using a 60-μm-thick layer of Kapton Polyimide removable tape.

View Article and Find Full Text PDF

Micro-drilling transparent dielectric materials by using non-diffracting beams impinging orthogonally to the sample can be performed without scanning the beam position along the sample thickness. In this work, the laser micromachining process, based on the combination of picosecond pulsed Bessel beams with the trepanning technique, is applied to different transparent materials. We show the possibility to create through-apertures with diameter on the order of tens of micrometers, on dielectric samples with different thermal and mechanical characteristics as well as different thicknesses ranging from two hundred to five hundred micrometers.

View Article and Find Full Text PDF

We investigate the effect of ultrafast laser surface machining on a monocrystalline synthetic diamond sample by means of pulsed Bessel beams. We discuss the differences of the trench-like microstructures generated in various experimental conditions, by varying the beam cone angle, the energy and pulse duration, and we present a brief comparison of the results with those obtained with the same technique on a sapphire sample. In diamond, we obtain V-shaped trenches whose surface width varies with the cone angle, and which are featured by micrometer sized channels having depths in the range of 10-20 μm.

View Article and Find Full Text PDF