Membraneless organelles, often referred to as condensates or coacervates, are liquid-liquid phase-separated systems formed between noncoding RNAs and intrinsically disordered proteins. While the importance of different amino acid residues in short peptide-based condensates has been investigated, the role of the individual nucleobases or the type of heterocyclic structures, the purine vs pyrimidine nucleobases, is less researched. The cell's crowded environment has been mimicked to demonstrate its ability to induce the formation of condensates, but more research in this area is required, especially with respect to RNA-facilitated phase separation and the properties of the crowding agent, poly(ethylene glycol) (PEG).
View Article and Find Full Text PDFThe photophysical processes of singlet fission and triplet fusion have numerous emerging applications. They involve the separation of a photo-generated singlet exciton into two dark triplet excitons and the fusion of two dark triplet excitons into an emissive singlet exciton, respectively. The role of the excimer state and the nature of the triplet-pair state in these processes have been a matter of contention.
View Article and Find Full Text PDFβ-Hairpin peptides with RNA-binding sequences mimicking the central two β-strands of the RNA recognition motif (RRM) protein domain have been observed to bind in a 2:1 fashion to a series of RNA homooligonucleotides in aqueous solution (PBS buffer, pH 7.40) with binding energies (-27 to -35 kJ mol) similar to those of full-size protein RRMs. The peptides display mild selectivities with respect to the binding of the different homooligomers.
View Article and Find Full Text PDFCryptophyte algae have a unique phycobiliprotein light-harvesting antenna that fills a spectral gap in chlorophyll absorption from photosystems. However, it is unclear how the antenna transfers energy efficiently to these photosystems. We show that the cryptophyte Hemiselmis andersenii expresses an energetically complex antenna comprising three distinct spectrotypes of phycobiliprotein, each composed of two αβ protomers but with different quaternary structures arising from a diverse α subunit family.
View Article and Find Full Text PDF