Publications by authors named "P Thanikaivelan"

Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf fibre cellulose-collagen, KFCC). We loaded it with magnetic bimetallic FeO@TiO (BFT) NPs to produce a photocatalyst material (KFCC-BFT) for the treatment of colored wastewater as well as a sorbent for oil-water separation.

View Article and Find Full Text PDF

Crosslinking of proteins such as collagen for enhanced stability and mechanical properties is an intriguing area in the context of both biomedical and industrial applications. Herein, we have shown the crosslinking of collagen fibers using visible light in a green solvent, ethanol, in the presence of photosensitizers such as methylene blue (Mb) and erythrosine B (Eb). The visible light induced crosslinking increases the shrinkage temperature of collagen fibers from 67 to 100 °C in a concentration dependent manner (1.

View Article and Find Full Text PDF

Tissue engineering (TE) is a promising approach for repairing diseased and damaged bone tissue. Injectable hydrogel based strategies offer a wide range of applications in rapid recovery of bone defects by acting as filler materials and depots for delivering various bioactive molecules and averting the need for surgical intervention. Chitosan (CS), a natural polysaccharide, forms a thermosensitive injectable hydrogel through the addition of beta-glycerophosphate (β-GP).

View Article and Find Full Text PDF

The development of hybrid scaffolds mimicking the extracellular matrix with bioactive factors has great potential to regenerate tissues in tissue engineering and wound-healing applications. Herein, poly(dialdehyde) gum acacia was synthesized by the selective oxidation of gum acacia and was blended with collagen and melatonin to fabricate biomimetic hybrid scaffolds. The inclusion of poly(dialdehyde) gum acacia improved the stability of collagen and immobilized the melatonin in the hybrid scaffolds.

View Article and Find Full Text PDF

Three-dimensional, functional, and porous scaffolds can find applications in a variety of fields. Here we report the synthesis of hierarchical and interconnected porous sponges using a simple freeze-drying technique, employing collagen extracted from animal skin wastes and superparamagnetic iron oxide nanoparticles. The ultralightweight, high-surface-area sponges exhibit excellent mechanical stability and enhanced absorption of organic contaminants such as oils and dye molecules.

View Article and Find Full Text PDF