Hypothesis: Liquid-liquid phase separation (LLPS) can provide micron-sized liquid compartments dispersed in an aqueous medium. This phenomenon is increasingly appreciated in natural systems, e.g.
View Article and Find Full Text PDFHypothesis: The endogenous self-assembly of amorphous magnesium-calcium phosphate (AMCP) nanoparticles in human small intestine is an intriguing and newly-discovered process involved in immune-surveillance mechanisms. The study of nano and microparticles formation in complex media mimicking in vivo conditions contributes to unravel the features of endogenous AMCPs and, from a physico-chemical perspective, to shed light on the effect of biorelevant molecules on the precipitation of AMCPs.
Experiments: Endogenous-like AMCPs have been synthesized in a commercial simulated intestinal fluid (SIF), which contains biorelevant molecules such as lecithin and taurocholate.
The self-assembly of amphiphilic graft copolymers is generally reported for polymer melts or polymers deposited onto surfaces, while a small number of cases deal with binary mixtures with water. We report on the associative properties of poly(ethylene glycol)-graft-poly(vinyl acetate) (PEG-g-PVAc) comb-like copolymers in water, demonstrating the existence of a percolative behaviour when increasing the PEG-g-PVAc content. Rheology, light- and small-angle X-ray scattering experiments, together with dissipative particle dynamics simulations, reveal a progressive transition from spherical polymer single-chain nanoparticles (SCNPs) towards hierarchically complex structures as the weight fraction of the polymer in water increases.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2018
Hypothesis: Dental decay, asa consequence of exposure to acidic foods and drinks, represents one of the most important tooth pathologies. Recently, enamel and dentinal surface remineralization using hydroxyapatite nano- and microparticles has been proposed; however, commercial remineralizing toothpastes are quite expensive, mostly due to the high costs of hydroxyapatite. Hence, we propose a thermoresponsive hybrid nanocomposite material as filler for tooth defects.
View Article and Find Full Text PDF