Publications by authors named "P Tass"

Abnormally strong neural synchronization may impair brain function, as observed in several brain disorders. We computationally study how neuronal dynamics, synaptic weights, and network structure co-emerge, in particular, during (de)synchronization processes and how they are affected by external perturbation. To investigate the impact of different types of plasticity mechanisms, we combine a network of excitatory integrate-and-fire neurons with different synaptic weight and/or structural plasticity mechanisms: (i) only spike-timing-dependent plasticity (STDP), (ii) only homeostatic structural plasticity (hSP), i.

View Article and Find Full Text PDF

Background: Abnormal neuronal synchrony is associated with several neurological disorders, including Parkinson's disease (PD), essential tremor, dystonia, and epilepsy. Coordinated reset (CR) stimulation was developed computationally to counteract abnormal neuronal synchrony. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites.

View Article and Find Full Text PDF

We present simulated data on coordinated reset stimulation (CRS) of plastic neuronal networks. The neuronal network consists of excitatory leaky integrate-and-fire neurons and plasticity is implemented as spike-timing-dependent plasticity (STDP). A synchronized state with strong synaptic connectivity and a desynchronized state with weak synaptic connectivity coexist.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic movement disorder characterized by a variety of motor and nonmotor comorbidities, including cognitive impairment, gastrointestinal (GI) dysfunction, and autonomic/sleep disturbances. Symptoms typically fluctuate with different settings and environmental factors and thus need to be consistently monitored. Current methods, however, rely on infrequent rating scales performed in clinic.

View Article and Find Full Text PDF