Publications by authors named "P Tarsini"

Despite their outstanding potential and the success that has already been achieved with three-dimensional (3D) printed hydrogel scaffolds, there has been little investigation into their application in the regeneration of damaged or missing adipose tissue (AT). Due to their macroscopic shape, microarchitecture, extracellular matrix-mimicking structure, degradability and soft tissue biomimetic mechanical properties, 3D printed hydrogel scaffolds have great potential for use in aesthetic, structural and functional restoration of AT. Here, we propose a simple and cost-effective 3D printing strategy using gelatin-based ink to fabricate scaffolds suitable for AT engineering.

View Article and Find Full Text PDF

Background: Great interest has recently been focused on tooth and tooth derivatives as suitable substrates for the treatment of alveolar bone defects. Here, we propose the use of demineralized baby teeth (BT) as potential grafting materials for bone augmentation procedures.

Methods: Particles of human BT (Ø < 1 mm) were demineralized by means of a chemical/thermal treatment.

View Article and Find Full Text PDF

Background: In recent decades, tooth derivatives such as dentin (D) and enamel (E) have been considered as potential graft biomaterials to treat bone defects. This study aimed to investigate the effects of demineralization on the physical-chemical and biological behavior of D and E.

Methods: Human D and E were minced into particles (Ø<1 mm), demineralized and sterilized.

View Article and Find Full Text PDF

Background: The aim of this work was the development and characterization of a photocatalytic filter for the treatment of indoor air, characterized by a low pressure drop.

Methods: The filter (photocatalytic filter) was based on a polyester substrate additivated with active carbon (Carbotex 150-6), treated with a sol of titanium dioxide (Sol 121-AB; NextMaterials Ltd.) and illuminated with UV LEDs to induce photocatalytic activity.

View Article and Find Full Text PDF

Genetic variation in alpha-adducin cytoskeletal protein is implicated in the polymerization and bundling of actin and alteration of the Na/K pump, resulting in abnormal renal sodium transport and hypertension in Milan hypertensive rats and humans. To investigate the molecular involvement of alpha-adducin in controlling Na/K pump activity, wild-type or mutated rat and human alpha-adducin forms were, respectively, transfected into several renal cell lines. Through multiple experimental approaches (microscopy, enzymatic assays, coimmunoprecipitation), we showed that rat and human mutated forms increased Na/K pump activity and the number of pump units; moreover, both variants coimmunoprecipitate with Na/K pump.

View Article and Find Full Text PDF