Publications by authors named "P Tardy"

Article Synopsis
  • Two-pore domain potassium (K2P) channels are crucial for regulating how cells respond to stimuli and function in the nervous system, and their selectivity filter structure is key to their ability to selectively allow potassium ions to pass.
  • The nematode has a large family of K2P channels with 47 genes, and this study focuses on the UNC-58 channel which is uniquely permeable to sodium ions due to a specific cysteine in its selectivity filter.
  • Through various experimental methods, the researchers found that UNC-58 causes depolarization in muscles and sensory neurons, leading to hypercontracted outcomes in gain-of-function mutants, highlighting the necessity of functional studies to understand how variations in selectivity filter sequences affect
View Article and Find Full Text PDF

Multiple advances have been made to increase the efficiency of CRISPR/Cas9 editing using the model genetic organism Caenorhabditis elegans (C. elegans). Here we report on the use of co-CRISPR 'marker' genes: worms in which co-CRISPR events have occurred have overt, visible phenotypes which facilitates the selection of worms that harbour CRISPR events in the target gene.

View Article and Find Full Text PDF

One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.

View Article and Find Full Text PDF

Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels.

View Article and Find Full Text PDF

CRISPR/Cas9 genome engineering strategies allow the directed modification of the genome to introduce point mutations, generate knock-out mutants, and insert coding sequences for epitope or fluorescent tags. Three practical aspects, however, complicate such experiments. First, the efficiency and specificity of single-guide RNAs (sgRNA) cannot be reliably predicted.

View Article and Find Full Text PDF