Publications by authors named "P Tallgren"

Objective: To test the applicability of different types of commercially available electrodes and electrode gels or pastes for recording of slow EEG potentials.

Methods: Experiments were carried out on six types of reusable electrodes (silver, tin and gold cup electrodes, sintered silver-silver chloride (Ag|AgCl), platinum, stainless steel), six disposable Ag|AgCl electrode models, and nine gels or pastes. We studied the parameters, which are critical in slow-potential recording, such as polarization, initial and long-term stability and low-frequency noise.

View Article and Find Full Text PDF

Objective: To study whether hemodynamic changes in human brain generate scalp-EEG responses.

Methods: Direct current EEG (DC-EEG) was recorded from 12 subjects during 5 non-invasive manipulations that affect intracranial hemodynamics by different mechanisms: bilateral jugular vein compression (JVC), head-up tilt (HUT), head-down tilt (HDT), Valsalva maneuver (VM), and Mueller maneuver (MM). DC shifts were compared to changes in cerebral blood volume (CBV) measured by near-infrared spectroscopy (NIRS).

View Article and Find Full Text PDF

Background: This study tested the idea that very slow EEG responses (direct current [DC] potential shifts) could be detected noninvasively during temporal lobe (TL) seizures, and that these shifts give lateralizing information consistent with that obtained by other methods.

Methods: Seven patients with TL epilepsy (TLE) were recorded with scalp DC-EEG technique at bedside. All recordings were performed simultaneously with conventional EEG (scalp in five, and intracranially in two; two patients with scalp recordings were recorded intracranially later).

View Article and Find Full Text PDF

Slow shifts in the human scalp-recorded EEG, including those related to changes in brain CO(2) levels, have been generally assumed to result from changes in the level of tonic excitation of apical dendrites of cortical pyramidal neurons. We readdressed this issue using DC-EEG shifts elicited in healthy adult subjects by hypo- or hypercapnia. A 3-min period of hyperventilation resulted in a prompt negative shift with a rate of up to 10 microV/s at the vertex (Cz) and an extremely steep dependence (up to 100 microV/mmHg) on the end-tidal Pco(2).

View Article and Find Full Text PDF

Objectives: The objective of this study is to test the hypothesis that the immature human brain exhibits slow electrical activity that is not detected by conventional (i.e. high-pass filtered) electroencephalography (EEG).

View Article and Find Full Text PDF