Publications by authors named "P Taivansaikhan"

Herein, using first-principles calculations, we predict spin reorientation from in-plane to out-of-plane magnetization of an individual Fe magnet at the monophosphor vacancy in two-dimensional blue phosphorous (2D blue-P) by a few percent of tensile strain. We further reveal that this magnetization reversal is associated with the spin-state transition of Fe 3d state from low-spin (1 [Formula: see text]) to high-spin state (5 [Formula: see text]), which occurs at the same tensile strain imposed into 2D blue-P, from the Ligand field theory analyses in the unpaired electron counts. The underlying mechanism for both the spin-state transition and spin-reorientation phenomena is the strain induced changes in the spin-orbit coupled adatomic [Formula: see text] and [Formula: see text] states through the strong hybridization with the P-3p  orbitals.

View Article and Find Full Text PDF

Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit.

View Article and Find Full Text PDF

We systematically investigate the effects of having Pt as a substrate and/or capping layer on the magnetism and magnetocrystalline anisotropy (MCA) of 3d transition metal (TMs; Cr, Mn, Fe, and Co) monolayers (MLs) by using a first-principles calculationl method. We found that Fe and Co MLs are ferromagnetic (FM) on a Pt(001) surface, but Mn and Cr MLs are antiferromagnetic (AFM). The magnetic moments are quite robust with additional Pt-capping.

View Article and Find Full Text PDF