Neonatal Netw
January 2017
Beckwith-Wiedemann syndrome (BWS) is the most common overgrowth disorder in infants. This article reviews a case of a premature infant with an atypical presentation of Beckwith-Wiedemann that was diagnosed at one month of age. It also addresses notable aspects of the etiology, diagnosis, and management of infants with BWS.
View Article and Find Full Text PDFThe Fanconi anemia (FA) complementation group C (FAC) protein gene encodes a cytoplasmic protein with a predicted Mr of 63,000. The protein's function is unknown, but it has been hypothesized that it either mediates resistance to DNA cross-linking agents or facilitates repair after exposure to such factors. The protein also plays a permissive role in the growth of colony-forming unit-granulocyte/macrophage (CFU-GM), burst-forming unit-erythroid (BFU-E), and CFU-erythroid (CFU-E).
View Article and Find Full Text PDFThe Fanconi anemia group C gene (FAC) encodes a 63-kDa protein that plays a role in the growth and differentiation of hematopoietic progenitor cells and in cellular resistance to bifunctional cross-linking agents. The function of the gene product is unknown, as are the factors that govern expression of the gene itself. Seeking to associate a function of this protein with a general metabolic pathway, we attempted to identify factors that induce or repress expression of the gene encoding it.
View Article and Find Full Text PDFHematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus (FAC -/-) are hypersensitive to the mitotic inhibitory effects of interferon (IFN-gamma). We tested the hypothesis that HPC from the bone marrow of Fanconi group C children are similarly hypersensitive and that the fas pathway is involved in affecting programmed cell death in response to low doses of IFN-gamma. In normal human and murine HPC, IFN-gamma primed the fas pathway and induced both fas and interferon response factor-1 (IRF-1) gene expression.
View Article and Find Full Text PDFTwo enzymes in the methionine salvage pathway, 5-methylthioribose kinase (MTR kinase) and 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTA/SAH nucleosidase) were purified from Klebsiella pneumoniae. Chromatography using a novel 5'-(p-aminophenyl)thioadenosine/5-(p-aminophenyl)thioribose affinity matrix allowed the binding and selective elution of each of the enzymes in pure form. The molecular mass, substrate kinetics and N-terminal amino acid sequences were characterized for each of the enzymes.
View Article and Find Full Text PDF