Large solar coronal mass ejections pose a threat in the near-Earth space. As a cause of extreme periods of space weather, they can damage satellite-based communications and create geomagnetically induced currents in power and energy grids. Further, the solar wind energetic particles can reduce the protecting layer of atmospheric ozone and pose a threat to life on Earth.
View Article and Find Full Text PDFUnderstanding atmospheric impacts of solar energetic particle precipitation (EPP) remains challenging, from quantification of the response in ozone, to implications on temperature. Both are necessary to understand links between EPP and regional climate variability. Here we use a chemistry-climate model to assess the importance of EPP on late winter/spring polar stratosphere.
View Article and Find Full Text PDFGround-based very low frequency (VLF) transmitters located around the world generate signals that leak through the bottom side of the ionosphere in the form of whistler mode waves. Wave and particle measurements on satellites have observed that these man-made VLF waves can be strong enough to scatter trapped energetic electrons into low pitch angle orbits, causing loss by absorption in the lower atmosphere. This precipitation loss process is greatly enhanced by intentional amplification of the whistler waves using a newly discovered process called rocket exhaust driven amplification (REDA).
View Article and Find Full Text PDFPulsating aurorae (PsA) are caused by the intermittent precipitations of magnetospheric electrons (energies of a few keV to a few tens of keV) through wave-particle interactions, thereby depositing most of their energy at altitudes ~ 100 km. However, the maximum energy of precipitated electrons and its impacts on the atmosphere are unknown. Herein, we report unique observations by the European Incoherent Scatter (EISCAT) radar showing electron precipitations ranging from a few hundred keV to a few MeV during a PsA associated with a weak geomagnetic storm.
View Article and Find Full Text PDFEnergetic electron precipitation (EEP) from the Earth's outer radiation belt continuously affects the chemical composition of the polar mesosphere. EEP can contribute to catalytic ozone loss in the mesosphere through ionization and enhanced production of odd hydrogen. However, the long-term mesospheric ozone variability caused by EEP has not been quantified or confirmed to date.
View Article and Find Full Text PDF