Background: In Alzheimer's disease (AD), tau and white matter lesion pathology are associated with clinical severity and subsequent decline, but their relative relationships with clinical assessments remain uncertain.
Objective: To examine cross-sectional and prognostic associations between baseline [F]GTP1 tau positron emission tomography (PET) standardized uptake value ratio (SUVRs) and T1 white matter hypointensity (WMHypo) volumes with clinical indices.
Methods: We analyzed participants with biomarker-confirmed prodromal (n = 127) or mild (n = 233) AD with baseline [F]GTP1 tau PET and MRI and longitudinal Clinical Dementia Rating-Sum of Boxes (CDR-SB), 13-item version of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13), Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Mini-Mental Status Examination (MMSE), and Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) data.
Background: Mild neurocognitive disorder (mNCD) is recognized as an early stage of dementia and is gaining attention as a significant healthcare problem due to current demographic changes and increasing numbers of patients. Timely detection of mNCD provides an opportunity for early interventions that can potentially slow down or prevent cognitive decline. Heart rate variability (HRV) may be a promising measure, as it has been shown to be sensitive to cognitive impairment.
View Article and Find Full Text PDFPurpose: Radiation therapy (RT) plays a key role in the management of esophageal cancer (EC). However, toxicities caused by proximity of organs at risk (OAR) and daily target coverage caused by interfractional anatomic changes are of concern. Daily online adaptive RT (oART) addresses these concerns and has the potential to increase OAR sparing and improve target coverage.
View Article and Find Full Text PDFBackground: Non-coplanarity and mixed beam modality could be combined to further enhance dosimetric treatment plan quality. We introduce dynamic mixed beam arc therapy (DYMBARC) as an innovative technique that combines non-coplanar photon and electron arcs, dynamic gantry and collimator rotations, and intensity modulation with photon multileaf collimator (MLC). However, finding favorable beam directions for DYMBARC is challenging due to the large solution space, machine component constraints, and optimization parameters, posing a highly non-convex optimization problem.
View Article and Find Full Text PDFBackground: Dose calculation in radiotherapy aims to accurately estimate and assess the dose distribution of a treatment plan. Monte Carlo (MC) dose calculation is considered the gold standard owing to its ability to accurately simulate particle transport in inhomogeneous media. However, uncertainties such as the patient's dynamically deforming anatomy can still lead to differences between the delivered and planned dose distribution.
View Article and Find Full Text PDF