Mortality from human immunodeficiency virus (HIV)-associated tuberculosis (TB) is high, particularly among hospitalized patients. In 433 people with HIV hospitalized with symptoms of TB, we investigated plasma matrix metalloproteinases (MMP) and matrix-derived biomarkers in relation to TB diagnosis, mortality, and Mycobacterium tuberculosis (Mtb) bloodstream infection (BSI). Compared to other diagnoses, MMP-8 was elevated in confirmed TB and in Mtb-BSI, positively correlating with extracellular matrix breakdown products.
View Article and Find Full Text PDFB cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease.
View Article and Find Full Text PDFA robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by (). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during infection, a key immune checkpoint for myeloid cells.
View Article and Find Full Text PDFPeptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the gene of (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial as well as primary cells infected with virulent Mtb.
View Article and Find Full Text PDFBACKGROUNDNovel biomarkers to identify infectious patients transmitting Mycobacterium tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to distinguish TB cases from healthy individuals and patients with other respiratory infections.METHODSWe applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South African and Peruvian cohorts.
View Article and Find Full Text PDF