Publications by authors named "P T Dobbler"

Phosphorus (P) is essential for plants but often limited in soils, with microbes playing a key role in its cycling. P deficiency in crops can be mitigated by applying by-products like sludge and struvite to enhance yield and sustainability. Here, we evaluated the contribution of four different types of fertilizers: i) conventional NPK; ii) sludge; iii) struvite; and iv) struvite+sludge in a semiarid maize plantation to the availability of P and the responses of the soil microbiome.

View Article and Find Full Text PDF

Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed.

View Article and Find Full Text PDF
Article Synopsis
  • Metagenomics allows scientists to analyze environmental DNA for insights into microbiomes, but eukaryotic organisms like fungi are often underrepresented due to challenges with intron-rich genes.
  • Researchers developed a machine learning algorithm, SVMmycointron, to accurately predict fungal introns, improving gene annotations in metagenomic datasets by up to 9.1%.
  • This tool enhances understanding of the role of fungi and other eukaryotes in microbiome function and is accessible for researchers working with metagenomics data.
View Article and Find Full Text PDF

Unlabelled: The purpose was identify an association between meconium microbiome, extra-uterine growth restriction, and head circumference catch-up.

Materials And Methods: Prospective study with preterm infants born <33 weeks gestational age (GA), admitted at Neonatal Unit and attending the Follow-Up Preterm Program of a tertiary hospital. Excluded out born infants; presence of congenital malformations or genetic syndromes; congenital infections; HIV-positive mothers; and newborns whose parents or legal guardians did not authorize participation.

View Article and Find Full Text PDF

Background: Early-onset neonatal sepsis (EONS) remains one of the leading causes of morbidity and mortality related to premature birth, and its diagnosis remains difficult. Our goal was to evaluate the intestinal microbiota of the first meconium of preterm newborns and ascertain whether it is associated with clinical EONS.

Methods: In a controlled, prospective cohort study, samples of the first meconium of premature infants with a gestational age (GA) ≤32 weeks was obtained at Hospital de Clínicas de Porto Alegre and DNA was isolated from the samples.

View Article and Find Full Text PDF