This work evaluated bacterial cellulose (BC) as a possible biodegradable soft electronics substrate in comparison to polyethylene terephthalate (PET), while also focusing on evaluating hybrid MXene/BC material as potential flexible electronic sensor. Material characterization studies revealed that the BC material structure consists of nanofibers with diameters ranging from 70 to 140 nm, stacked layer-by-layer. BC samples produced are sensitive to post-treatment with isopropanol resulting in a change of structural and mechanical properties.
View Article and Find Full Text PDFStress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods.
View Article and Find Full Text PDFIn this work, the structure of silica thin films synthesized with three different SiO precursors and obtained by the sol-gel method and dip coating technique was studied. Additionally, the influence of Ag addition on the obtained silica sols and then gel structure was investigated. Silica coatings show antireflective properties and high thermal resistance, as well as hydrophobic or hydrophilic properties.
View Article and Find Full Text PDFTransport networks, such as vasculature or river networks, provide key functions in organisms and the environment. They usually contain loops whose significance for the stability and robustness of the network is well documented. However, the dynamics of their formation is usually not considered.
View Article and Find Full Text PDF