Publications by authors named "P Szolovits"

Background: Large language models (LLMs) such as GPT-4 hold great promise as transformative tools in health care, ranging from automating administrative tasks to augmenting clinical decision making. However, these models also pose a danger of perpetuating biases and delivering incorrect medical diagnoses, which can have a direct, harmful impact on medical care. We aimed to assess whether GPT-4 encodes racial and gender biases that impact its use in health care.

View Article and Find Full Text PDF

Objective: Reflex testing protocols allow clinical laboratories to perform second line diagnostic tests on existing specimens based on the results of initially ordered tests. Reflex testing can support optimal clinical laboratory test ordering and diagnosis. In current clinical practice, reflex testing typically relies on simple "if-then" rules; however, this limits the opportunities for reflex testing since most test ordering decisions involve more complexity than traditional rule-based approaches would allow.

View Article and Find Full Text PDF

Despite recent methodology advancements in clinical natural language processing (NLP), the adoption of clinical NLP models within the translational research community remains hindered by process heterogeneity and human factor variations. Concurrently, these factors also dramatically increase the difficulty in developing NLP models in multi-site settings, which is necessary for algorithm robustness and generalizability. Here, we reported on our experience developing an NLP solution for Coronavirus Disease 2019 (COVID-19) signs and symptom extraction in an open NLP framework from a subset of sites participating in the National COVID Cohort (N3C).

View Article and Find Full Text PDF

Objective: Reflex testing protocols allow clinical laboratories to perform second line diagnostic tests on existing specimens based on the results of initially ordered tests. Reflex testing can support optimal clinical laboratory test ordering and diagnosis. In current clinical practice, reflex testing typically relies on simple "if-then" rules; however, this limits their scope since most test ordering decisions involve more complexity than a simple rule will allow.

View Article and Find Full Text PDF

Clinical artificial intelligence (AI)/machine learning (ML) is anticipated to offer new abilities in clinical decision support, diagnostic reasoning, precision medicine, clinical operational support, and clinical research, but careful concern is needed to ensure these technologies work effectively in the clinic. Here, we detail the clinical ML/AI design process, identifying several key questions and detailing several common forms of issues that arise with ML tools, as motivated by real-world examples, such that clinicians and researchers can better anticipate and correct for such issues in their own use of ML/AI techniques.

View Article and Find Full Text PDF