Motivation: There is growing interest in the biomedical research community to incorporate retrospective data, available in healthcare systems, to shed light on associations between different biomarkers. Understanding the association between various types of biomedical data, such as genetic, blood biomarkers, imaging, etc. can provide a holistic understanding of human diseases.
View Article and Find Full Text PDFA key problem in domain adaptation is determining what to transfer across different domains. We propose a data-driven method to represent these changes across multiple source domains and perform unsupervised domain adaptation. We assume that the joint distributions follow a specific generating process and have a small number of identifiable changing parameters, and develop a data-driven method to identify the changing parameters by learning low-dimensional representations of the changing class-conditional distributions across multiple source domains.
View Article and Find Full Text PDFProc Mach Learn Res
April 2019
Covariate shift is a prevalent setting for supervised learning in the wild when the training and test data are drawn from different time periods, different but related domains, or via different sampling strategies. This paper addresses a transfer learning setting, with covariate shift between source and target domains. Most existing methods for correcting covariate shift exploit density ratios of the features to reweight the source-domain data, and when the features are high-dimensional, the estimated density ratios may suffer large estimation variances, leading to poor prediction performance.
View Article and Find Full Text PDFBackground: Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer.
Results: The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins.
Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters.
View Article and Find Full Text PDF