Publications by authors named "P Stilbs"

Objective: To recap the historical journey leading to the first cartilage research article using nuclear magnetic resonance (NMR), published in 1955 by 2 Swedish researchers, Erik Odeblad and Gunnar Lindström.

Design: Extensive Internet search utilizing both English and Swedish websites, and reading the dissertations available at the Royal Institute of Technology (Stockholm, Sweden) and via interlibrary loans at Oakland University (Michigan, USA).

Results: Using a primitive NMR instrument that Lindström built for his graduate research at the Nobel Institute for Physics (Stockholm, Sweden), Odeblad and Lindström studied the characteristics of the NMR signal in calf cartilage.

View Article and Find Full Text PDF

Complex formation in methanol between monodisperse polyethylene oxide (PEO) and a large set of cations was studied by measuring the effective charge acquired by PEO upon complexation. Quantitative data were obtained at a low ionic strength of 2 mM (for some salts, also between 0.5 and 6 mM) by a combination of diffusion nuclear magnetic resonance (NMR) and electrophoretic NMR experiments.

View Article and Find Full Text PDF

We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay.

View Article and Find Full Text PDF

In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g.

View Article and Find Full Text PDF