Publications by authors named "P Steinleitner"

Parametric downconversion driven by modern, high-power sources of 10-fs-scale near-infrared pulses, in particular intrapulse difference-frequency generation (IPDFG), affords combinations of properties desirable for molecular vibrational spectroscopy in the mid-infrared range: broad spectral coverage, high brilliance, and spatial and temporal coherence. Yet, unifying these in a robust and compact radiation source has remained a key challenge. Here, we address this need by employing IPDFG in a multi-crystal in-line geometry, driven by the 100-W-level, 10.

View Article and Find Full Text PDF

Diode-pumped Cr:ZnS oscillators have emerged as precursors for single-cycle infrared pulse generation with excellent noise performance. Here we demonstrate a Cr:ZnS amplifier with direct diode-pumping to boost the output of an ultrafast Cr:ZnS oscillator with minimum added intensity noise. Seeded with a 0.

View Article and Find Full Text PDF

We demonstrate the design, production, characterization and application of two dispersive complementary mirror pairs compensating second- and third-order dispersion, respectively. Both mirror pairs operate in the spectral range from 1.2-3.

View Article and Find Full Text PDF

Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating or superconducting phases. In transition metal dichalcogenide heterostructures, electrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity and moiré-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation and thermalization dynamics of correlations including ultrafast phase transitions.

View Article and Find Full Text PDF

We demonstrate ultrabroadband electro-optic detection of multi-THz transients using mechanically exfoliated flakes of gallium selenide of a thickness of less than 10 µm, contacted to a diamond substrate by van-der-Waals bonding. While the low crystal thickness allows for extremely broadband phase matching, the excellent optical contact with the index-matched substrate suppresses multiple optical reflections. The high quality of our structure makes our scheme suitable for the undistorted and artifact-free observation of electromagnetic waveforms covering the entire THz spectral range up to the near-infrared regime without the need for correction for the electro-optic response function.

View Article and Find Full Text PDF