We study the generation of spin-orbit (SO) modes via four-wave mixing (FWM)-based parametric amplification. SO modes carry quantized total angular momentum (TAM), and we show that FWM processes that generate new signals conserve TAM. This is a generalization of prior research which operated in a regime where FWM processes conserved spin and orbital angular momenta independently.
View Article and Find Full Text PDFIn this paper, we analyze and numerically simulate mechanisms for generating directed rf radiation by a low-intensity laser pulse train (LPT) propagating in air. The LPT ionizes the air, forming a plasma filament. The ionization process relies on the background level of radioactivity which plays an important role in initiating a collisional ionization process.
View Article and Find Full Text PDFWe present an erratum to our Letter [Opt. Lett.47, 3447 (2022)10.
View Article and Find Full Text PDFWe analyze the effects of atmospheric turbulence on the mode power spectrum of beams carrying orbital angular momentum represented by Laguerre-Gauss (LG) modes. For an input (p,m) LG mode, i.e.
View Article and Find Full Text PDFWe analyze the effects of atmospheric turbulence on the mode power spectrum of beams carrying orbital angular momentum represented by Laguerre-Gauss (LG) modes. For an input (0, m) LG mode, we calculate the power transferred to other modes (0, m') due to turbulence. The analysis is validated against split-step beam propagation simulations and shows agreement into the strong turbulence regime.
View Article and Find Full Text PDF