Life-course epidemiology relies on specifying complex (causal) models that describe how variables interplay over time. Traditionally, such models have been constructed by perusing existing theory and previous studies. By comparing data-driven and theory-driven models, we investigated whether data-driven causal discovery algorithms can help in this process.
View Article and Find Full Text PDFWe adapt graphical causal structure learning methods to apply to nonstationary time series data, specifically to processes that exhibit stochastic trends. We modify the likelihood component of the BIC score used by score-based search algorithms, such that it remains a consistent selection criterion for integrated or cointegrated processes. We use this modified score in conjunction with the SVAR-GFCI algorithm [15], which allows us to recover qualitative structural information about the underlying data-generating process even in the presence of latent (unmeasured) factors.
View Article and Find Full Text PDFInt J Data Sci Anal
August 2018
Many real datasets contain values missing not at random (MNAR). In this scenario, investigators often perform list-wise deletion, or delete samples with missing values, before applying causal discovery algorithms. List-wise deletion is a sound and general strategy when paired with algorithms such as FCI and RFCI, but the deletion procedure also eliminates otherwise good samples that contain only a few missing values.
View Article and Find Full Text PDFA fundamental task in various disciplines of science, including biology, is to find underlying causal relations and make use of them. Causal relations can be seen if interventions are properly applied; however, in many cases they are difficult or even impossible to conduct. It is then necessary to discover causal relations by analyzing statistical properties of purely observational data, which is known as causal discovery or causal structure search.
View Article and Find Full Text PDF