Alterations in plant metabolism play a key role in the complex plant-pathogen interactions. However, there is still a lack of knowledge about the connection between changes in primary and specialized metabolism and the plant defense against diseases that impact crops. Thus, we aim to study the metabolic reprograming in plants upon infection by pv.
View Article and Find Full Text PDFBackground: Glucosinolates (GSLs) constitute a characteristic group of secondary metabolites present in the genus. These compounds confer resistance to pests and diseases. Moreover, they show allelopathic and anticarcinogenic effects.
View Article and Find Full Text PDFspecies produce glucosinolates, a specific group of secondary metabolites present in the Brassicaceae family with antibacterial and antifungal properties. The employment of improved varieties for specific glucosinolates would reduce the production losses caused by pathogen attack. However, the consequences of the increment in these secondary metabolites in the plant are unknown.
View Article and Find Full Text PDFPlant responses against pathogens are influenced by growth immunity tradeoff, which ensure the best use of limited resources. We study how the immobilization of carbon resources and the induction of defensive responses (glucosinolates, phenolic compounds, stomatal closure) can influence the biomass of two Brassica oleracea lines, differing in their resistance, after infection with Xanthomonas campestris pv. campestris.
View Article and Find Full Text PDFis grown in northwestern Spain to obtain turnip greens. The tops of the same plants (flower stems with buds) are cut and sell as turnip tops, increasing the value of the crop. This practice could be extended to other brassicas.
View Article and Find Full Text PDF