The integration of viral genomic data into public health surveillance has revolutionized our ability to track and forecast infectious disease dynamics. This review addresses two critical aspects of infectious disease forecasting and monitoring: the methodological workflow for epidemic forecasting and the transformative role of molecular surveillance. We first present a detailed approach for validating epidemic models, emphasizing an iterative workflow that utilizes ordinary differential equation (ODE)-based models to investigate and forecast disease dynamics.
View Article and Find Full Text PDFOver the past two decades, the study of self-similarity and fractality in discrete structures, particularly complex networks, has gained momentum. This surge of interest is fueled by the theoretical developments within the theory of complex networks and the practical demands of real-world applications. Nonetheless, translating the principles of fractal geometry from the domain of general topology, dealing with continuous or infinite objects, to finite structures in a mathematically rigorous way poses a formidable challenge.
View Article and Find Full Text PDFThe emergence of viral variants with altered phenotypes is a public health challenge underscoring the need for advanced evolutionary forecasting methods. Given extensive epistatic interactions within viral genomes and known viral evolutionary history, efficient genomic surveillance necessitates early detection of emerging viral haplotypes rather than commonly targeted single mutations. Haplotype inference, however, is a significantly more challenging problem precluding the use of traditional approaches.
View Article and Find Full Text PDFIn this paper, we study intra-host viral adaptation by antigenic cooperation - a mechanism of immune escape that serves as an alternative to the standard mechanism of escape by continuous genomic diversification and allows to explain a number of experimental observations associated with the establishment of chronic infections by highly mutable viruses. Within this mechanism, the topology of a cross-immunoreactivity network forces intra-host viral variants to specialize for complementary roles and adapt to the host's immune response as a quasi-social ecosystem. Here we study dynamical changes in immune adaptation caused by evolutionary and epidemiological events.
View Article and Find Full Text PDF