Publications by authors named "P Siegkas"

This study assessed whether grip socks reduce in-shoe foot motion and improve change of direction performance in team sports players and compared the effects between males and females. A sledge and pulley system confirmed the static coefficient of friction was increased in the grip socks (1.17) compared to the regular socks (0.

View Article and Find Full Text PDF

A computational method for generating porous materials and composite structures was developed and implemented. The method is based on using 3D Voronoi cells to partition a defined space into segments. The topology of the segments can be controlled by controlling the Voronoi cell set.

View Article and Find Full Text PDF

Polyurethane foams have unique properties that make them suitable for a wide range of applications, including cushioning and seat pads. The foam mechanical properties largely depend on both the parent material and foam cell microstructure. Uniaxial loading experiments, X-ray tomography and finite element analysis can be used to investigate the relationship between the macroscopic mechanical properties and microscopic foam structure.

View Article and Find Full Text PDF

The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood.

View Article and Find Full Text PDF

There is limited evidence on the efficacy of insole materials to reduce plantar pressure during regular walking and loaded walking. In-shoe plantar pressures and subjective footwear comfort were recorded in twenty healthy participants at a self-selected treadmill walking speed in six conditions: two commercial insoles or no insole, and with or without carrying a load in a backpack. A single-material insole, comprised of polyurethane, had reduced density and compressive stiffness compared to a dual-material insole with added viscoelastic material in rearfoot and forefoot regions.

View Article and Find Full Text PDF