Publications by authors named "P Seta"

Background: Lack of access to documentation is a key barrier to GP registration, despite NHS England guidance stating that documents are not required. Staff attitudes and practice regarding registration of those without documentation are under- researched.

Aim: To understand the processes through which registration might be refused for those without documents, and the factors operating to influence this.

View Article and Find Full Text PDF

In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity).

View Article and Find Full Text PDF

Nanofibrous membranes with an average diameter of 100 and 180 nm were fabricated from poly(acrylonitrile-co-maleic acid) (PANCMA) by the electrospinning process. These nanofibrous membranes contain reactive groups which can be used to covalently immobilize biomacromolecules. Two natural macromolecules, chitosan and gelatin, were tethered on these nanofibrous membranes to fabricate dual-layer biomimetic supports for enzyme immobilization in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxyl succinimide (NHS).

View Article and Find Full Text PDF

Electrokinetic extraction has been tested to remove lead from an Algerian contaminated soil ([Pb] = 4.432 +/- 0.275 mg g(-1)) sited near a battery plant.

View Article and Find Full Text PDF

A protocol was used to prepare a dual-layer biomimetic membrane as support for enzyme immobilization by tethering chitosan on the surface of poly(acrylonitrile-co-maleic acid) (PANCMA) ultrafiltration hollow fiber membrane in the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxylsuccin-imide (NHS). The chemical change of the chitosan-modified PANCMA membrane surface was confirmed with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Lipase from Candida rugosa was immobilized on this dual-layer biomimetic membrane using glutaraldehyde (GA), and on the nascent PANCMA membrane using EDC/NHS as coupling agent.

View Article and Find Full Text PDF