The absence of detailed knowledge about regulatory interactions makes the use of phenomenological assumptions mandatory in cell biology modeling. Furthermore, the challenges associated with the analysis of these models compel the implementation of mathematical approximations. However, the constraints these methods introduce to biological interpretation are sometimes neglected.
View Article and Find Full Text PDFLattices of exciton-polariton condensates represent an attractive platform for the study and implementation of non-Hermitian bosonic quantum systems with strong non-linear interactions. The possibility to actuate on them with a time dependent drive could provide for example the means to induce resonant inter-level transitions, or to perform Floquet engineering or Landau-Zener-Stückelberg state preparation. Here, we introduce polaromechanical metamaterials, two-dimensional arrays of μm-sized traps confining zero-dimensional light-matter polariton fluids and GHz phonons.
View Article and Find Full Text PDFRecent experiments demonstrated that GaAs/AlAs based micropillar cavities are promising systems for quantum optomechanics, allowing the simultaneous three-dimensional confinement of near-infrared photons and acoustic phonons in the 18-100 GHz range. Here, we investigate through numerical simulations the optomechanical properties of this new platform. We evidence how the Poisson's ratio and semiconductor/vacuum boundary conditions lead to very distinct features in the mechanical and optical three-dimensional confinement.
View Article and Find Full Text PDFJ Pain Symptom Manage
February 2002