The lung parenchyma-consisting of gas-filled alveoli, vasculature, and connective tissue-is the site for gas exchange in the lung and plays a critical role in a number of chronic lung diseases. In vitro models of lung parenchyma can, therefore, provide valuable platforms for the study of lung biology in health and disease. Yet modeling such a complex tissue requires integrating multiple components, including biochemical cues from the extracellular environment, geometrically defined multicellular interactions, and dynamic mechanical inputs such as the cyclic stretch of breathing.
View Article and Find Full Text PDFTissue fibrosis remains a serious health condition with high morbidity and mortality rates. There is a critical need to engineer model systems that better recapitulate the spatial and temporal changes in the fibrotic extracellular microenvironment and enable study of the cellular and molecular alterations that occur during pathogenesis. Here, we present a process for chemically modifying human decellularized extracellular matrix (dECM) and incorporating it into a dynamically tunable hybrid-hydrogel system containing a poly(ethylene glycol)-α methacrylate (PEGαMA) backbone.
View Article and Find Full Text PDFUnlabelled: Idiopathic pulmonary fibrosis is a chronic disease characterized by progressive lung scarring that inhibits gas exchange. Evidence suggests fibroblast-matrix interactions are a prominent driver of disease. However, available preclinical models limit our ability to study these interactions.
View Article and Find Full Text PDFNeuropharmacology
September 2015
Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammation that affects normal central nervous system signaling. Critically, many neuroimmune diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation of a variety of anti-inflammatory processes.
View Article and Find Full Text PDFNeuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in the brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells.
View Article and Find Full Text PDF