Automated synthesis planning has recently re-emerged as a research area at the intersection of chemistry and machine learning. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques, and unnecessarily hamper progress. To remedy this, we present a synthesis planning library with an extensive benchmarking framework, called SYNTHESEUS, which promotes best practice by default, enabling consistent meaningful evaluation of single-step and multi-step synthesis planning algorithms.
View Article and Find Full Text PDFBackground: Intensive care units (ICUs) harbor the sickest patients with the utmost needs of medical care. Discharge from ICU needs to consider the reason for admission and stability after ICU care. Organ dysfunction or instability after ICU discharge constitute potentially life-threatening situations for patients.
View Article and Find Full Text PDFBackground: Transfusion of packed red blood cells (pRBCs) is still associated with risks. This study aims to determine whether renal function deterioration in the context of individual transfusions in individual patients can be predicted using machine learning. Recipient and donor characteristics linked to increased risk are identified.
View Article and Find Full Text PDFThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.
View Article and Find Full Text PDFAims: Patient admission is a decision relying on sparsely available data. This study aims to provide prediction models for discharge versus admission for ward observation or intensive care, and 30 day-mortality for patients triaged with the Manchester Triage System.
Methods: This is a single-centre, observational, retrospective cohort study from data within ten minutes of patient presentation at the interdisciplinary emergency department of the Kepler University Hospital, Linz, Austria.