Human nail diseases, mostly caused by fungal infections, are common and difficult to treat. The development and testing of new drugs and drug delivery systems for the treatment of nail diseases is often limited by the lack of human nail material for permeation studies. Animal material is frequently used, but there are only few comparative data on the human nail plate, and there is neither a standardized test design nor a nail bed analogue to study drug uptake into the nail.
View Article and Find Full Text PDFDiclofenac sodium tablets were successfully prepared via hot-melt extrusion (HME) and fused deposition modeling (FDM), using different molecular-weight (Mw) grades of hydroxyethyl cellulose (HEC) as the main excipient. Hydroxypropyl cellulose (HPC) was added to facilitate HME and to produce drug-loaded, uniform filaments. The effect of the HEC grades (90-1000 kDa) on the processability of HME and FDM was assessed.
View Article and Find Full Text PDFThe identification and characterization of novel compounds with improved functionality and safety is of great importance. Ionic liquids are potential candidates for use in dermal formulation as multifunctional components with a large variability potential. The behavior of Ionic Liquids (ILs) in aqueous solutions has an impact on their functionality in the formulation as well as on their biological activity.
View Article and Find Full Text PDFBiofabrication methods such as extrusion-based bioprinting allow the manufacture of cell-laden structures for cell therapy, but it is important to provide a sufficient number of embedded cells for the replacement of lost functional tissues. To address this issue, we investigated mass transfer rates across a bioink hydrogel for the essential nutrients glucose and glutamine, their metabolites lactate and ammonia, the electron acceptor oxygen, and the model protein bovine serum albumin. Diffusion coefficients were calculated for these substances at two temperatures.
View Article and Find Full Text PDFBioprinting for tissue or disease models is a promising but complex process involving biofabrication, cell culture and a carrier material known as bioink. The native extracellular matrix (ECM), which forms the scaffold for cells, consists of several components including collagen as a gelling agent to confer mechanical stiffness and provide a substrate for cell attachment. Bioprinting therefore needs an artificial ECM that fulfills the same functions as its natural counterpart during and after the printing process.
View Article and Find Full Text PDF