Hypothesis: Measurements of the cochlear duct length (CDL) are dependent on the resolution of the imaging dataset.
Background: Previous research has shown highly precise cochlear measurements using 3D-curved multiplanar reconstruction (MPR) and flat-panel volume computed tomography (fpVCT). Thus far, however, there has been no systematic evaluation of the imaging dataset resolution required for optimal CDL measurement.
Background: Chemosensory dysfunction (CD) has been reported as a common symptom of SARS-CoV-2 infection, but it is not well understood whether and for how long changes of smell, taste and chemesthesis persist in infected individuals.
Methodology: Unselected adult residents of the German federal state of Schleswig-Holstein with Polymerase Chain Reaction (PCR)-test-confirmed SARS-CoV-2 infection were invited to participate in this large cross-sectional study. Data on the medical history and subjective chemosensory function of participants were obtained through questionnaires and visual analogue scales (VAS).
Objective: Growing interest in measuring the cochlear duct length (CDL) has emerged, since it can influence the selection of cochlear implant electrodes. Currently the measurements are performed with ionized radiation imaging. Only a few studies have explored CDL measurements in magnetic resonance imaging (MRI).
View Article and Find Full Text PDFObjective: There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCT) and three-dimensional curved multiplanar reconstruction.
Methods: First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCT and compared to high-resolution micro-CT scans.
This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers.
View Article and Find Full Text PDF