Publications by authors named "P Scheibler"

1. The presence of ionotropic P2X receptors, targets of ATP in fast synaptic transmission, as well as metabotropic P2Y receptors, known to activate K(+) currents in cultured neostriatal neurones, was investigated in medium-spiny neurones and cholinergic interneurones contained in neostriatal brain slices from 5-26-day-old rats. 2.

View Article and Find Full Text PDF

Immunocytochemical and Co(2+) uptake studies revealed that in primary cultures of rat cortical neurones, the majority of neurones are gamma-aminobutyric acid (GABA) immunopositive and can express Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. By fura-2 microfluorimetry, it was shown that the stimulation with the selective agonist (S)-AMPA (0.3-300 microM) induced a concentration-dependent but cell-variable increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) (EC(50) value 7.

View Article and Find Full Text PDF

This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Toshio Narahashi and Kinya Kuriyama. The presentations were (1) Modulation of neuroreceptors and ion channels by alcohol, by T.

View Article and Find Full Text PDF

Activation of adenosine A(1) receptors by endogenous adenosine plays a neuroprotective role under various pathophysiological conditions including hypoxia. Intracellular recordings were made in rat pyramidal cells of the somatosensory cortex. Hypoxia (5 min) induced a membrane depolarization and a decrease of input resistance.

View Article and Find Full Text PDF

Acamprosate has recently been introduced in relapse prophylaxis in weaned alcoholics. Using fura-2 microfluorimetry, the present study investigates whether acamprosate affects N-methyl-D-aspartate (NMDA) or K+-induced changes in free intracellular Ca2+ concentration ([Ca2+]i) in rat cultured mesencephalic neurones. Both application of NMDA (plus glycine) and elevation of extracellular K+ induced rapid increases in [Ca2+]i which respectively were insensitive and sensitive to omega-conotoxin (omega-CTX) MVIIC, a blocker of voltage-dependent Ca2+ channels (VDCCs).

View Article and Find Full Text PDF