In light optics, beams with orbital angular momentum (OAM) can be produced by employing a properly-tuned two-cylinder-lens arrangement, also called π/2 mode converter. It is not possible to convey this concept directly to the beam in an electron microscope due to the non-existence of cylinder lenses in commercial transmission electron microscopes (TEMs). A viable work-around are readily-available electron optical elements in the form of quadrupole lenses.
View Article and Find Full Text PDFEnergy-loss magnetic chiral dichroism (EMCD) is a versatile method for measuring magnetism down to the atomic scale in transmission electron microscopy (TEM). As the magnetic signal is encoded in the phase of the electron wave, any process distorting this characteristic phase is detrimental for EMCD. For example, elastic scattering gives rise to a complex thickness dependence of the signal.
View Article and Find Full Text PDFIn optics, mode conversion is an elegant way to switch between Hermite Gaussian and Laguerre Gaussian beam profiles and thereby impart orbital angular momentum onto the beam and to create vortices. In optics such vortex beams can be produced in a setup consisting of two identical cylinder lenses. In electron optics, quadrupole lenses can be used for the same purpose.
View Article and Find Full Text PDFInteraction of the probe with the specimen in an electron microscope inevitably leads to entanglement between the probe and the scatterer. In spite of the importance of entanglement in many areas of modern physics, this subject has not been touched in the literature. Here, we develop some ideas about entanglement in electron microscopy for a number of scattering mechanisms.
View Article and Find Full Text PDFWe discuss the feasibility of detecting spin polarized electronic transitions with a vortex filter. This approach does not rely on the principal condition of the standard electron energy-loss magnetic chiral dichroism (EMCD) technique, the precise alignment of the crystal in order to use it as a beam splitter, and thus would pave the way for the application of EMCD to new classes of materials and problems, like amorphous magnetic alloys and interface magnetism. The dichroic signal strength at the L-edge of ferromagnetic Cobalt (Co) is estimated on theoretical grounds using a single atom scattering approach.
View Article and Find Full Text PDF