Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures have emerged as front-runners for future hole-based quantum processors. Here, we present strong coupling between a hole charge qubit, defined in a double quantum dot (DQD) in planar Ge, and microwave photons in a high-impedance (Z = 1.3 kΩ) resonator based on an array of superconducting quantum interference devices (SQUIDs).
View Article and Find Full Text PDFOne of the most promising platforms for the realization of spin-based quantum computing are planar germanium quantum wells embedded between silicon-germanium barriers. To achieve comparably thin stacks with little surface roughness, this type of heterostructure can be grown using the so-called reverse linear grading approach, where the growth starts with a virtual germanium substrate followed by a graded silicon-germanium alloy with an increasing silicon content. However, the compatibility of such reverse-graded heterostructures with superconducting microwave resonators has not yet been demonstrated.
View Article and Find Full Text PDFCombining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator. The quantum confinement in the nanowire is achieved using deterministically grown wurtzite tunnel barriers.
View Article and Find Full Text PDFSpin qubits in silicon and germanium quantum dots are promising platforms for quantum computing, but entangling spin qubits over micrometer distances remains a critical challenge. Current prototypical architectures maximize transversal interactions between qubits and microwave resonators, where the spin state is flipped by nearly resonant photons. However, these interactions cause backaction on the qubit that yields unavoidable residual qubit-qubit couplings and significantly affects the gate fidelity.
View Article and Find Full Text PDF