The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ∼10 nm long and 1.
View Article and Find Full Text PDFThe TIM10 chaperone facilitates the insertion of hydrophobic proteins at the mitochondrial inner membrane. Here we report the novel molecular mechanism of TIM10 assembly. This process crucially depends on oxidative folding in mitochondria and involves: (i) import of the subunits in a Cys-reduced and unfolded state; (ii) folding to an assembly-competent structure maintained by intramolecular disulfide bonding of their four conserved cysteines; and (iii) assembly of the oxidized zinc-devoid subunits to the functional complex.
View Article and Find Full Text PDFHealth Care Manag Sci
August 2002
Transcribing medical documents accurately into pre-defined formats and within certain time frames is vital for administrative and medical purposes in any hospital. This paper describes quantitative models incorporating available data to represent transcription activities of a medical records department. We forecasted the workload of the department, determined the optimal worker schedule and designed a simulation model to represent the workflow of the transcription function of a medical record department.
View Article and Find Full Text PDFThe TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution.
View Article and Find Full Text PDFThe pro-apoptotic protein Bak is converted from a latent to an active form by damage-induced signals. This process involves an early exposure of an occluded N-terminal epitope of Bak in intact cells. Here we report a subsequent damage-induced change in Bak, detected using an antibody to the central BH-1 domain.
View Article and Find Full Text PDF