Publications by authors named "P Sass"

The synthetic small molecule DCAP is a chemically well-characterized compound with antibiotic activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens. Until now, its mechanism of action was proposed to rely exclusively on targeting the bacterial membrane, thereby causing membrane depolarization, and increasing membrane permeability (Eun 2012, 134 (28), 11322-11325; Hurley 2015, 6, 466-471). Here, we show that the antibiotic activity of DCAP results from a dual mode of action that is more targeted and multifaceted than previously anticipated.

View Article and Find Full Text PDF

Background: Renal volume (RV) is associated with renal function and with a variety of cardiovascular risk factors (CVRFs). We analysed RV using magnetic resonance imaging (MRI) in a large population-based study (Study of Health in Pomerania; SHIP-TREND) to find sex- and age-specific reference values for RV and to test the influence of several markers on RV. The main objective is to describe reference values for RV in people from the general population without kidney disease.

View Article and Find Full Text PDF

Wound healing complications affect numerous patients each year, creating significant economic and medical challenges. Currently, available methods are not fully effective in the treatment of chronic or complicated wounds; thus, new methods are constantly sought. Our previous studies showed that a peptide designated as PDGF2 derived from PDGF-BB could be a promising drug candidate for wound treatment and that RADA16-I can serve as a release system for bioactive peptides in wound healing.

View Article and Find Full Text PDF

Discovery of novel antibiotics needs multidisciplinary approaches to gain target enzyme and bacterial activities while aiming for selectivity over mammalian cells. Here, we report a multiparameter optimisation of a fragment-like hit that was identified through a structure-based virtual-screening campaign on Escherichia coli IspE crystal structure. Subsequent medicinal-chemistry design resulted in a novel class of E.

View Article and Find Full Text PDF

Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR.

View Article and Find Full Text PDF