Green synthesis of nanoparticles has become a significant area of research, driven by the demand for sustainable, economical, and environmentally friendly processes, particularly in biomedical applications. In this study, silver nanoparticles (AgNPs) were produced using 10 g of Couroupita guianensis flower extract through a straightforward and environmentally friendly method. The biosynthesized AgNPs were characterized using UV-Vis spectroscopy, XRD, FTIR, SEM, and EDS techniques, confirming their successful formation and structural properties.
View Article and Find Full Text PDFThe biosynthesis of nanoparticles is a crucial research area aimed at developing innovative, cost-effective, and eco-friendly synthesis techniques for various applications. Herein, we synthesized copper oxide nanoparticles (CuNPs) using Couroupita guianensis flower extract via a simple green synthesis method. These green CuNPs demonstrate promising antimicrobial activity and anticancer activity against A549 nonsmall cell lung cancer (NSCLC) cells.
View Article and Find Full Text PDFNosocomial infections are serious threats to the entire world in healthcare settings. The major causative agents of nosocomial infections are bacterial pathogens, among which Enterobacteriaceae family member Serratia marcescens plays a crucial role. It is a gram-negative opportunistic pathogen, predominantly affecting patients in intensive-care units.
View Article and Find Full Text PDFAspartate Semialdehyde Dehydrogenase (ASDH) is an important enzyme essential for the viability of pathogenic microorganisms. ASDH is mainly involved in amino acid and cell wall biosynthesis of microorganisms, hence it is considered to be a promising target for drug design. This enzyme depicts similar mechanistic function in all microorganisms; although, the kinetic efficiency of an enzyme differs according to their active site residual composition.
View Article and Find Full Text PDFComplete functional annotations of proteins are essential to understand the role and mechanisms in pathogenesis. Aminoglycoside nucleotidyltransferases are the subclasses of aminoglycosides modifying enzymes conferring resistance to organisms. Insight into the structural and functional understanding of nucleotidyltransferase family protein provides vital information to combat pathogenesis.
View Article and Find Full Text PDF