Publications by authors named "P Sansonetti"

The maternal microbiome influences child health. However, its impact on a given offspring's stem cells, which regulate development, remains poorly understood. To investigate the role of the maternal microbiome in conditioning the offspring's stem cells, we manipulated maternal microbiota using Akkermansia muciniphila.

View Article and Find Full Text PDF

Intestinal mucins play a crucial role in the mucosal barrier, serving as the body's initial defense against microorganisms. However, how the host regulates the secretion and glycosylation of these mucins in response to bacterial invasion remains unclear. Our study demonstrates that when exposed to (), a gut pathobiont, the host mucosa promptly adjusts the behavior of specialized goblet cells (GCs) located in the middle of the crypts.

View Article and Find Full Text PDF

Unlabelled: The transformation of DNA into cells is the basis of molecular biology. Commonly employed techniques include heat shock transformation, electro-transformation, conjugation, transduction, and protoplast fusion. Recently, ultrasonic transformation technology has been developed to transfer DNA into competent cells.

View Article and Find Full Text PDF

The deleterious effects of human activities on biodiversity in the vegetal and animal world, and on climate changes are now well-established facts. However, little is yet known on the impact of human activities on microbial diversity on the planet and more specifically on the human microbiota Large implementation of metagenomics allows exaustive microbial cataloguing with broad spatio-temporal resolution of human microbiota. A reduction in bacterial richness and diversity in the human microbiota, particularly in the intestinal tract, is now established and particularly obvious in the most industrialized regions of the planet.

View Article and Find Full Text PDF

For 350 years, we have known that the human body hosts microbes, then called "animalcules". For over a century, following the demonstration of the role of some of these microbes in diseases, questions have arisen about the role of the largely predominant ones colonizing human skin and mucous surfaces, particularly the rich microbial ecosystem of the intestine, the gut microbiota. From the invention of germ-free life - axenism - which experimentally validated the human-microbe symbiosis, resulting from a long coevolution, to the development of anaerobic culture methods, then to the invention of molecular diagnosis, deep sequencing opening up metagenomic and omics approaches in general, a remarkable race has taken place between technological innovations and conceptual advances.

View Article and Find Full Text PDF