Publications by authors named "P Sadayappan"

genome assembly is a fundamental problem in computational molecular biology that aims to reconstruct an unknown genome sequence from a set of short DNA sequences (or ) obtained from the genome. The relative ordering of the reads along the target genome is known , which is one of the main contributors to the increased complexity of the assembly process. In this article, with the dual objective of improving assembly quality and exposing a high degree of parallelism, we present a partitioning-based approach.

View Article and Find Full Text PDF

Training models with massive inputs is a significant challenge in the development of Deep Learning pipelines to process very large digital image datasets as required by Whole Slide Imaging (WSI) in computational pathology and analysis of brain fMRI images in computational neuroscience. Graphics Processing Units (GPUs) represent the primary workhorse in training and inference of Deep Learning models. In order to use GPUs to run inference or training on a neural network pipeline, state-of-the-art machine learning frameworks like PyTorch and TensorFlow currently require that the collective memory on the GPUs must be larger than the size of the activations at any stage in the pipeline.

View Article and Find Full Text PDF

Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory.

View Article and Find Full Text PDF

Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multidimensional parameter space consisting of input performance parameters to the applications that are known to affect their execution times. While some performance parameters such as grouping of workflow components and their mapping to machines do not affect the accuracy of the analysis, others may dictate trading the output quality of individual components (and of the whole workflow) for performance.

View Article and Find Full Text PDF

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions.

View Article and Find Full Text PDF