J Control Release
December 2024
Diffusion is defined as general mechanism for drug release from advanced delivery systems, yet dynamic structure of dosage form intrinsically plays an unknown role. The synchrotron radiation X-ray micro-computed tomography (SR-μCT) three-dimensional (3D) imaging and in-depth analysis of 3D structures were applied to readily differentiate materials and accurately capture internal structure changes of multiple unit pellet system (MUPS) and the constituent pellets, visualizing internal 3D structure of a MUPS of theophylline tablets for their 3 levels hierarchy structures: pellets with rapid drug release characteristics, a protective cushion layer and a matrix layer. Drug release pathways were extracted from SR-μCT images and a 3D maze network was constructed using pore network analysis to quantify the internal structural evolution during drug release.
View Article and Find Full Text PDFOver the past two decades, has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1).
View Article and Find Full Text PDFBackground And Aims: Long distance dispersal (LDD) contributes to the replenishment and recovery of tropical seagrass habitats exposed to disturbance, such as cyclones and infrastructure development. However, our current knowledge regarding the physical attributes of seagrass fragments that influence LDD predominantly stems from temperate species and regions. The goal of this paper is to measure seagrass fragment density and viability in two tropical species, assessing various factors influencing their distribution.
View Article and Find Full Text PDFVegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates.
View Article and Find Full Text PDF